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This paper intends to show how the theory of stochastic cyclostationary processes can be used to study
stochastic resonance in static nonlinearities. The statistic we use is the covariance function of the output. The
covariance is a second-order cumulant and is not dependent on by the mean. Furthermore, this covariance is
not averaged in time as is usually done in the stochastic resonance literature. A two-dimensional Fourier
transform of the covariance gives the so-called spectral correlation. The spectral correlation depends on the
usual harmonic frequency and on another frequency, called cycle frequency. The cyclostationarity of a signal
makes the spectral correlation discrete in the cycle frequency. The zero cycle frequency corresponds to the
usual “stationary power spectrum” used in the stochastic resonance literature. We thus exploit all the second-
order statistical information. We first revisit classical stochastic resonance in threshold devices using the
spectral correlation, showing that the effect is seen for nonzero cycle frequencies. The cases of additive and
multiplicative noise are detailed. We then study stochastic resonance in threshold devices for communication
signals. These signals are usually modeled as stochastic cyclostationary processes. We show that stochastic
resonance occurs, and the phenomenon is quantified using the spectral correlation of the output: The amplitude
of the spectral correlation at nonzero cycle frequencies presents a maximum as the power of the input noise is
increased[S1063-651X99)08405-9

PACS numbdps): 05.40—a, 02.50-r

I. INTRODUCTION trains in neuron$11,12. The effect of stochastic resonance
was first quantified using an input-output coherence measure
Stochastic resonance is usually described as a nonlineft2], and later by information theory tooJ4¢3-16. For ex-
phenomenon that allows an improved transmission of a sigample, it is shown that the capacifyn the information
nal by interaction with noise. In the past 15 years, this effectheory senseof a static nonlinear channel presents a stochas-
has been the subject of much research, both theoretical ani¢ resonance effect. But the capacity of a channel is also an
experimental. The main theories of stochastic resonance &mput-output” measure, since it represents the maximum of
well as experimental evidence can be found in many reviewshe so-called transinformation or mutual entropy. In these
[1-4]. works, the signal is called aperiodic. However, this terminol-
Several theories exist that describe stochastic resonance agy is a little bit confusing, since signals are often consid-
dynamical systems. Unfortunately, since the problem is difered as stochastic. They are in fact often cyclostationary:
ficult, only approximate theories have been develofed.,  Their statistics are periodic with respect to the reference time
adiabatic theory5], linear response theoft—4], etc) How-  [17].
ever, for static nonlinearities, for which stochastic resonance The property of cyclostationarity is common to almost all
has been reported quite recenté~8|, exact results may be works concerning stochastic resonance. But surprisingly, it
written in certain circumstances, such as whiteness of thlas not been taken into account, since most of the works
noise. reported in the literature eliminate cyclostationarity by per-
For that case, recent papers by Chapeau-Blondeau arfidrming a coherent average in time of the statistics of inter-
Godivier[9,10] proposed a systematic treatment of stochasest. This average is equivalent to a “stationarization” by
tic resonance for periodic signals corrupted by additive whitdmposing on the signal a random uniformly distributed phase
noise. Their theory is based on the fact that the output of that the time origin.
nonlinearity may be viewed as a periodic signal plus a per- However, cyclostationary signals are recognized to be of
turbation. Using the Fourier series of the periodic signal andyreat importance to the signal processing commufiig.
the second-order statistics of the perturbation, they were abl€his is explained by the great number of engineering appli-
to define clearly the signal-to-noise ratio at the harmonics otations where cyclostationary signals occur: rotating ma-
the output. Evidence of stochastic resonance was reportedhines, communication systems, and in general any applica-
and their theory was successfully confronted with an experitions where a clock(which can be hidden rules the
ment. phenomena.
Another interesting effect of stochastic resonance con- The aim of this paper is thus to explore the question of
cerns “aperiodic” signals, such as harmonic noise, spikewhether cyclostationary signals can lead to stochastic reso-
nance effects when they are corrupted by noise and then
nonlinearly transformed. Furthermore, we study static non-
* Author to whom correspondence should be addressed. F28X:  linearities. The case of dynamical systems is under investi-
476 82 63 84. Electronic address: Bidou.Amblard@lis.inpg.fr gation.
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We will present in Sec. Il the tools needed to manipulatestatistics are in general not invariant under a shift of the
cyclostationary stochastic processes. These tools are not dirigin of time. In fact, statistics involved in stochastic reso-
ferent from those classically usécbvariancel but they will  nance are often periodic in tinfd7,18. In order to define
be totally exploited in the rest of the paper, contrary to thethe power spectrum of the signals, an average over one pe-
literature where they are averaged to handle stationary quafiod is now usually made. This average has the effect of
tities. The main tool we use is the so-callspectral corre-  «stationarizing” the signals under consideration. Indeed, it
Iat|on,_ which is th_e two-dimensional Fourier tra_nsform of the can be shown that this operation is equivalent to imposing on
covariance function. The spectral correlation is then a twoyne signals a random initial phase, uniformly distributed on a

dimensione;ll functiorr]]. The firs(tjvariab!e Is tITedtrad;Itior;al fré- period. The aim of this section is to show that this operation
quency, whereas the second one is called dele fre- is “ad hog” and that performing it creates a loss of infor-

guency When a process is cyclostationary, its covariancemation To discuss this point, we now preséat recal)

function is a periodic(or almost periodig function of the : :
reference time. In that case, the cycle frequency takes Onlsgsmsisfacts on the theory of cyclostationary stochastic pro

discrete values, revealing the periodicity of the signal ana-
lyzed. The spectral correlation at the zero cycle frequency
(infinite period in the signalis equivalent to the “stationar-

ized” (or averagefispectrum that is used in the stochastic Roughly speaking, a functiof{t) is almost periodic if it

resonanceéSR) literature. In this section, we also plead for accepts a so-called Fourier-Bohr decompositioi()
the use of the covariance function instead of the correlation- 5 ¢, exp(d#f,t) where the sum is made over the et
function. The covariance is eumulantbased statistic, and  — ¢, such thatc,#0}. This set is finite or infinite but

therefore only retains second-order statistical featuies qyntable. Furthermore, the frequencies involved are not in

eliminates the contribution of the méan __general a multiple of a fundamental harmonic. Coefficients
In Sec. Ill, we revisit classical stochastic resonance in

static nonlinearities within the framework of cyclostationary G are obtained via (.:"_“mTf“"(l/T)fof(t)eXp
processes. Stochastic resonance is studied for determinisﬁ_2I Wfkt)dt? Of course, pe_nodlc functigns form a subclass of
periodic signals corrupted by additive noise as well as mul? most-periodic functiondn that case, the Fourier-Bohr de-
tiplicative noise. We show that the output of a thresholgCOMPosition reduc&;s to the Fourier Egrles expalj'smn'
device attacked by such signals is cyclostationary. Further-t _Let X; be a stoc astic process. T IS Process 1S said to be
more, we show that stochastic resonance is revealed by e —”Ctl.y almost cyclostationary If the joint probabmty de_nsny
amining the spectral correlation amplitude at nonzero cycl unction (PDR {pxt,ka ..... XHTH(XO’Xl"“’Xn’t’Tl""’Tn)} 1S
frequencies. Working with cumulants rather than momentsin almost periodic function df and this is for all integera
leads to strange results: For example, in the spectrum of aand all lagsr; . This implies that the statistics of the process
output signal, the usual peaks superimposed on the baclgre almost periodic with respect to
ground noise spectrum disappear. This is due to the cancel- | et M, (t)=E[x,] and I'y(t,7)=Co\{X,,X..,] be the
ing of the mean in the cumulant calculation. In addition, thismean and the covariance function xf, respectively EJ ]
shows that results described in the SR literature concern th&tands for the mathematical expectation or set average, and
evaluation of the effect on the first-order statistics. Co\ | is the covariance operaforf x, is almost cyclosta-
After showing how cyclostationarity can be used to quantifytionary, then its mean is in general almost periodic, and its
classical stochastic resonance, we turn to the problem of depvariance almost periodic with respectttdf the mean and
termining if SR can occur for cyclostationary stochastic pro-the covariance are only periodic, we will say that the process
cesses. In Sec. IV, we examine Signals that are W|d6|y Usqg Cyc|ostationary(more exacﬂy we should say “second-
in communication systems. Basically, these signals are madgder cyclostationary).
of sequences of letters that are randomly taken into a discrete Note that we work here with the covariance instead of the
alphabet. Each letter is supported by a function of durafion second-order moment. This is done to eliminate from the
Hence, the time axis is cut into pieces of lengtheach of  second-order statistics the contribution of the first order.
which supports a letter. The signals are zero mean and Cy:onsider the following simple example, of great interest for
clostationary: Their statistics are periodic in the referenceochastic resonance. Let, be the sum of a sinusoid
time. Since many communication SyStemS have non”nearisin(zﬂ-yt) and a Stationary, Zero mean notﬁe Then1|\/|x(t)
ties such as threshold devices, we study what happens t0j@ periodic and further, the second-order moment reads
noisy communication signal when it passes through a statig[x x, . ]= sin(2mut)sin2mu(t+7)]+Ty(7). Therefore, the
nonlinearity. Exact calculations are performed on some exgorrelation is periodic and one can conclude that the process
amples, and stochastic resonance is revealed in the spectfalcyclostationary. However, the covariance is equal to the
correlation of the output. Furthermore, we show that lookingcovariance of the noise, and hence is not periodic. This
at only the stationarized spectrum may not reveal the effeckhows that the cyclostationarity property of this signal is
whereas considering nonzero cycle frequency always reveafsly due to its mean. Therefore, to understand the effect of
the effect. cyclostationarity, we must work with cumulants instead of
To conclude the paper, we make some remarks on thgomentsthe covariance is the second-order cumy)lafiis
work developed here and give some ideas for future work. remark makes it possible to define an almost cyclostationar-
ity up to ordern. A stochastic process is said to be almost
cyclostationary up to orden if its mean is almost periodic

Authors working on stochastic resonance have of cours@nd if its cumulant functions Cum; , X+ . ,... X+ ] are al-
noted that the signals involved are nonstationary, since theinost periodic functions ibfori=1,...n—1. As an example,

Almost cyclostationarity

II. BASICS ON ALMOST-CYCLOSTATIONARY SIGNALS
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the process sing2ut)+b, described above is a first-order cy- =/ ..pp(y)dy. Note that the evenness pf(x) implies that

clostationary process. 1-Fp(X)=Fp(—x).
Coming back to the covariance, if it is almost periodic, it
admits a Fourier-Bohr series expansion in the variable A. SR for additive noise

Therefore, if we do a two-dimensional Fourier transform of
the covariance ¢<t, v« 7), we obtain a quantity which
can be written as

In this section, we examine what happens to an almost-
periodic signals; corrupted by an additive white noidg,
when passing through a static nonlinearity. gt s;+ b,
andz,=g(y;). The mean of; is given by

sx<a,v>=f2 s(fi,v)8(a—T),

KEA
o o . Mz<t)=f g(y)Pp(y —spdy. ()
whereA is finite or infinite but countable. Functid,(«, v)

is discrete ina and continuous inv. It is called thespectral 14 eyaluate the covariance function af, we use the fact

correlation Furthermore, frequency is called acycle fre- 5 b, is a pure white noiseb, and b, . are statistically

guency The term “spectr.al correlqtion” comes fror_n the fact independent, and therefoye andy, . . are also independent.
that the spectral correlation examines the correlation betwee}ggny static nonlinearity preserves this independence; hence
the harmonic components gf at frequencies anda—v. It = \\o"gptain ’

is well known that for a stationary process, this correlation is

zero if the frequencies are differgnt. Hence, for a stationary T',(t,7)=Co\z,z. ,]=Coz,z]8(7)=Vaiz]s(7).
process, the spectral correlation is equal to zero, except for (2
a=0, for which S;(0,»)=s(0,r) reduces to the classical

power spectrum. Furthermore, if the process is cyclostationT he variance ot; is then provided by

ary with fundamental period, then we can show that

Vaf[Zt]ZJ 9(y)2pp(y—sody—M,(t)% ()

1 (T2 ,
lim —f T (t,7)dt|e 277,

Tﬂ+ooT —-T/2

Sx(0.v)= f

Note that Eqs(1)—(3) show that, in general, the mean and
. . . . . the covariance function o are periodic with respect to z,
This result |I!ustrates wha’g is usually d_one |n“the_SR I!tera,-,is therefore in general cyclostationary, at least at order 2.
ture: averaging the covariance to define a ‘“stationarized We cannot go further in this general case. To get an idea
spectrum. But in fact, this operation corresponds to taking)f what happens, we now turn to a simple nbnlinearity
the slicea=0 in the spectral correlation. This explains the ’ '
loss of information we mentioned earlier.

Finally, note that estimators of the spectral correlation )
exist[19], and therefore the spectral correlation is not only a L&t us considery(x) =1y, ...((x) where =1, and the

Simple threshold device

theoretical tool but can also be used in practice. periodic signals;= B < z1;— 2 2 (t—1T) where 0<p<1
and 0< »=<T/2. 1;(x) stands for the characteristic function
IIl. REVISITING CLASSICAL SR gf interval I-. .Fun(itlon/st is even and adnlztl/ts thg I’Ijourler series
WITH CYCLOSTATIONARY PROCESSES THEORY ECOMPOSItiors,=ao/2+ 218 COS(2TKYT) wit
The aim of this section is to examine stochastic resonance A= 27npB
in static nonlinearities using the framework of cyclostation- o T
ary processes.
We again insist on the fact that we will completely exploit 2B [ wknp
the second-order statistics of the signal using the spectral ak:ﬁsm 1

correlation. Furthermore, the spectral correlation is a cumu-

lant (covariancg and is therefore unpolluted by the mean of According to Eq. (1), the mean ofz reads M(t)

the signals. = [ "pp(y—s)dy which leads toM(t)=Fy(—6+s,).
We consider a deterministic almost-periodic sighator-  Then, using Eq.(3), we have Vdiz,]=Fy(—0+s,)—

rupted by a pure white noidg . The resulting signa; then (- +s)2 which can be written as Viz,]=F,(— ¢

passes through a static nonlinearity whose characteristic rex NCEH

sponse is denoted by. We consider both the additive and  with the periodic signal considered, it is of interest that

multiplicative corruption cases. _ ~ the mean and the variance nfhave the same form as signal
“Pure” white noise means that for all integemsthe vari- g since they are a static nonlinear transformatiors,of

ablesbtl,...,btn are statistically independent and identically Thus, the variance o, can be written as

distributed. Note that these restrictions make the noise

strictly stationary. We will furthermore assume that the noise

has zero mean, and that its probability density funcpigfx)

is even (this assumption can be easily eliminated and is

adopted only for conveniengeThe variance of the noise is with gB,=F,(— 0+ B)F,(0—B)—F,(— 0)F,(#). There-

denoted byo?. In what follows, we need the cumulative fore, the variance of the output admits the Fourier series

density function(CDF) of the noise: It is defined aB,(x) expansion Vdiz,]=af/2+ = ,-,af cos(27kt/T) where

Var{zt]=ﬁzi§ L pr2.piz(t=iT)+Fo(— O)Fy(6),
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02 ' ' ' ' i ' ‘ ' ' ary. Between these extremes, there is an optimal valus, of
'\ such that the output is the “most” cyclostationary.
0181 % | We also observe in Fig. 1 that the strength of the effect

decreases ag decreases. In the limi—0, we obtaing,
—0, and the output is no longer cyclostationary. This is true
since the input is stationary f@@=0 and the system is static.
But for 8—0, we obtainS,(0,v) =F,(— 0)F(6) which pre-
sents a maximum as a function @f . This again shows that
there is stochastic resonance, but for a stationary input. Thus,
for threshold systems the term stochastic resonance is not the
proper term. As proposed by Gammaitp8l, the effect here
should be called “noise induced threshold crossings” in-
stead of stochastic resonance, because no matching condition
between two time scales is needed. Indeed, we observe here
that the effect is independent of the frequency we use. Nev-
ertheless, we will continue to use the term stochastic reso-
nance.
] We now come back to the disappearance of the discrete
: spectrum in the variable. Usually, this discrete spectrum is
ol s ~ - = observed when we work with the “stationarized” spectrum,
o 1+ 2 3 4 5 6 7 &8 9 0 e the slicea=0 of the spectral correlation. However, the
term S,(0,v) does not present this discrete spectrum. This is
ecause we work with cumulants rather than moments. To

FIG. 1. Stochastic resonance in a threshold device attacked by tain th d-ord i t
periodic signal additively corrupted by a Gaussian white noise. amobtain the second-order moment, we mus WEHZ:Z 1 ]

plitude B, of the spectral correlation at a given cycle frequency:rz(t'T)“LE[Zt]E_[ZHT]_' Therefore, if we Fqurier trans-
plotted as a function of the standard deviation of the noisegfor 10'M this expression with respect to both variables, we ob-
=1.2 andB=0.1: -, B=0.5: - -, 3=0.9: ---. These curves have a tain the spectral correlation plus a term which will present a

maximum which reveals stochastic resonafembitrary units. discrete spectrum fow=0. In this case, we would proceed
as is usually done in the SR literature.
278 Instead, we first analyze the mean of the signal
ag=——+2Fu(— O)Fs(0),
M(t)=Fp(— )+ [Fp(—0+8)—Fp(—6)]
2B, . [mkny .
a§=ﬂ_—kzsm<?). XE/ L (t=iT),

The spectral correlation df; readily follows: Sincel,(t,7) which is periodic and whose Fourier series expansion reads
=Varg(y,)16(r), after a two-dimensional Fourier trans-

form, we obtai Fo(— 0+ 8)—Fy(—
orm, we obtain M.(1) = 7LFo( 9+$) b( 0)]+Fb(—0)
7B, B, . [mkn
Sz(a'aV):( T +Fb(_0)|:b(0))5(a’)+k§lHSW\(?) Fb(—0+ﬂ)—Fb(—6)Sm(wkn)
K k=1 k T
X| 6|l a— = +5(a+—) .
T T x| 8| a—=|+8 a+$ .

Therefore, the spectral correlation of the output has a discrete

spectrum of cycle frequencies, each of which supports a corln Fig. 2, we plot the rati¢F,(— 6+ 8) — Fy(— 8) ]/ o}, (am-
stant amplitude as a function of the harmonic frequency plitude of the fundamentgplas a function ofo,,, for some
(even fora=0). Hence, the discrete spectrum usually seervalues ofg and #=1.2 [note that the amplitudes of the har-

in SR has disappeared. Nevertheless, the amplitude of thaonics are the same, except a factor of skof/ T)/(km)]. We
spectral correlation at a given nonzero cycle frequency preagain observe SR here. This corresponds to the classical way
sents the features of stochastic resonance, as shown in Fig.df.observing SR, since the above-mentioned ratio is roughly
In the graph, obtained for a Gaussian noise and #or the signal-to-noise ratigSNR) at the fundamental of the
=T/2, we showg, as a function otr,, for some values 08  output. Note that this approach has been extensively used
and #=1.2. The classical maximum characteristic of sto-[9,10,4. Chapeau-Blondea{il0] also studies the gain in
chastic resonance is clearly seen. When the noise is very lowerms of SNR between the input and the output at a given
there is nearly no signal at the output, and the spectral colarmonic of the mean signal. The output SNR is defined as
relation is very low. If the noise is very powerful, the signal the ratio of the amplitude squared at a harmonic by the tem-
crosses the threshold “very randomly,” and the cyclosta-porally averaged variance, which is given in our framework
tionarity of the input is lost: The output tends to be station-by S,(0,v), since averaging is equivalent to considering the
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07 . ' ' ' ' ' - - T Fourier series decomposition &%, (— 6/s;)Fy(6/s;), which
is far from being an easy task.
We thus consider the following simple exampkg= 3

08r 1 + B czli— 2z (t—iT) where 0<B<3 and 0< 5<T/2.
A Note that this function is never equal to zero. Furthermore,

05l 3 this function is even and admits the Fourier series decompo-
' sition ;= ay/2+ =y~ 18y cos(2rkt/T) with

O.Q

= 2

Fo4 a0=Lﬁ +1,

w? T

1

%0'3 a :2_Bsin _’7Tk7]

w Kk T

02r, . Now, sinces; is constant by intervalsi-,(— 6/s;) is also
constant on the same intervals. In other words, [¥%ar
=Fu(— 0/s)Fp(0/s;) has the same structure gsand may
7 be written Vafz|=F,(—20)Fu(20)+ B,2ic 71— i,z (t
—iT) with

01F

0
Pz= Fb( 12+p
FIG. 2. Stochastic resonance in a threshold device attacked by Bence

periodic signal additively corrupted by a Gaussian white noise.
[Fo(— 0+ B)—Fu(—6)]/o}, plotted as a function of the standard

—Fp(—20)F(20).

Fb( 12+

the Fourier series expansion of [\gr=
Fo(— 0/s)Fp(6/sy) is a2+ == 1af cos(2rkt/T) with

deviation of the nois€“SNR” for E[z] at a given harmonic 6 27

=1.2 andB=0.1, -; 8=0.5, - -; 8=0.9, - - (arbitrary unit3. aé: T z +2F,(—20)F,(26),
a=0 slice in the spectral correlation. Note also that gains 2 K

(output SNR/input SNR greater than one, as reported by aﬁzﬁsin M)
Chapeau-Blondeall 0], have also been observed during the K T

development of this work. f th ral lati fread
This discussion shows that the stochastic resonance effezpere ore, the spectral correlation pireads

studied here is a first-order effect, i.e., it is due to the fact

that the mean of the input signal is periodic. Of interest is the S,(a,v)= ﬂfz + Fb(—20)Fb(20)) oa)

observation of SR in the spectral correlation, which is a

second-order statistical quantity “unpolluted” by the first- 8, Ky K K
order statistics. This is a purely nonlinear effect. +k>1 ﬁsin( ?) o a— T) + 6| at+ T/l

We now turn to a second example of SR for deterministic

signals, but for which the input signal is zero mean. If we examine the evolution 0B, as a function ofo,, we

will observe the characteristic of stochastic resonance. How-
B. SR for multiplicative noise ever, in this case, since the inpyt has a periodic covari-

Let s, be an almost periodic deterministic signal, assumed®Ce; it is interesting to compare_the spectral correlation of
to be strictly positive and of maximum amplitude lower thanthe output to the spectral correlation of the input.
1. Considery,=s;b,. Once againb, is a pure white noise SinceI'y(t,7)=03s{8(7), the spectral correlation of
with zero mean and variance?. Signaly, is then almost ~has the same structure as thaizpf and reads

cyclostationary, and its covariance function reddgt, ) 8, 1
=o2s?8(7). Note thaty, is zero mean, so that the approach sy(a,,,):(ﬁ(qu “18(a)
developed by Chapeau-Blondeau and Godij#t0] cannot T 4

be applied. The power spectrum of the input defined as the B wky
Fourier transform of the averaged covariance is flat: It does +ol> —ysin( —)
not present any peaks. m

We study the outpui, of the simple threshold device L -
9(x) =15 +((x) attacked byy;. The mean o is found to ~ With B,=(z+B)"—z.
be E[z,]=Fy(— 6/s;). Now, note that variableg, andz, , To compareS,(a,v) and S(a,v) at cycle frequency
are statistically independent. Hence, the covariancezof K/T, it suffices to study the ratig,/(B,0}). We perform
readsl’,(t,7) =Varf z]48(7). The variance of, is given by  this comparison for the Gaussian case.
Var{z,]=Fy(— 0/s;)Fp(6/s;). Hence,z is almost cyclosta- Figure 3 shows the evolution qﬂzl(ﬁyoﬁ) as a function
tionary since its mean is almost periodic, as is its covarianceof the standard deviation of the noisg, in the Gaussian
To obtain the spectral correlation, we then must perform thease. This figure is obtained fop=1.2 and for B8
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0.16 ' ' - T ' - ' - ‘ trum, and the classical approach to SR would be to study
E[z], whose Fourier coefficients normalized by present
the feature.

To conclude this section, we see that the framework of
cyclostationary processes offers an alternative view of sto-
chastic resonance. It allows a complete description of the
statistics of the output of the nonlinear system and provides a
] deeper understanding of SR than do traditional approaches.
This understanding also uses cumulants rather than moments
to decouple statistics of different orders. This can cause con-
fusion since we have seen that the traditional power spec-
trum with peaks no longer exists: The periodicity in the out-
put seems to be eliminated. In fact, this periodicity is clearly
depicted by the structure of the spectral correlation that re-
flects the cyclostationarity of the output. Therefore, the
framework proposed here goes farther than traditional ap-
proaches that actually only study the periodicity of the mean
] of the output signal.

To continue our development, we now consider stochastic
. resonance for stochastic processes additively corrupted by
78 9 10 noise, and we then enter the field of “aperiodic” stochastic

resonance. This kind of SR has already been considered
[20,11,12,14,15,10(see alsd4], and references thergirin

FIG. 3. Stochastic resonance in a threshold device attacked by @ost of these works, the term aperiodic is quite ambiguous
periodic signal multiplicatively corrupted by a Gaussian white noisesince signals are in general cyclostationary, and can be con-
ratio ﬁzl(ﬁyaﬁ) plotted as a function of the standard deviation of sidered as special cases of communication signals. Further-
the noise(ratio between the amplitude of the spectral correlationmore, input-output measures are used to quantify stochastic
before and after the nonlinearity¢=1.2 andB3=0.1, -; 3=0.25,  resonancée.g., coherence, transinformatjoin the follow-

- - B=0.45, - (arbitrary units. ing sections, we study general communication signals and
quantify stochastic resonance using only the output statistics

=0.1,0.25, 0.45. Figure 4 represents the raﬁﬂg/(Byaﬁ) as  of the system.

a function of ¢ and o, for 8=0.1. These figures again ex-

press stochastic resonance, or to be more precise, as we men-

tioned earlier, “noise induced threshold crossings.”

Finally, note again that we do not have a discrete spec-

0.14

0.121

0.04F

0.02F .

IV. COMMUNICATION SIGNALS AND STATIC
NONLINEARITIES

In communication, a message to be transmitted is coded
before emission. There exist many ways of coding, but basi-
cally, elements of the code are chosen in an alphabét of
letters{l,,, n=0,...N—1}. To create a signal that is emitted,
words are coded using letters in the alphabet, and each letter
of the code is repeated during a periodToseconds. This
leads to the simple form of a transmitted signal

+ oo

s= > af(t—iT), %)

wherea; is chosen in the alphabet={l,,, n=0,...N—1}.
Functionf may be ideally the characteristic function of inter-
val [0,T], but is generally more complicated. We will assume
here thatf (t) is compactly supported ov¢d,T].

Signals; is of course deterministic. However, the coding
of a message leads to a very erratic sequenca’sf This
sequence is therefore well described in a statistical sense.
The following assumptions are usually made.

351

(1) a; is a random variable that takes its values in the
FIG. 4. Stochastic resonance in a threshold device attacked by @phabetA={l,, n=0,..N—1}, each letter being chosen

periodic signal multiplicatively corrupted by a Gaussian white With equal probability I¥.

noise. Two-dimensional graph of the raig/(8,07) as a function (2) The sequencéa;, i =—,...,+} is an independent

of @ and o, for B=0.1 (arbitrary unit3. and identically distributed sequence. In other words, the dis-
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A. Output statistics for a static nonlinearity

In this section, we investigate the statistical properties of
the outputz, of a static nonlinear filter attacked by=s;
+b,. Let g() denote the characteristic of the filter, so that
z:=9g(yy)-

Sincey; is cyclostationaryz; will be in general cyclosta-
tionary. We assume here that has the same fundamental
period, that isT. We will come back to this assumption.2f
is cyclostationary with period, knowing its statistics for all
t is equivalent to knowing them fdre [0,T]. Therefore, we
restrictt to that interval.

FIG. 5. Periodic support of communications signals considered Mean
in this paper. Fot, 7 outside the domairs; ands;, , are indepen- ) .
dent random variables. This property makes the calculation of the The mean of the .Output is given p&[zt]z Elg(y)] .
statistics of the output of a static nonlinearity e&asbitrary units. =J9(y)py.(y,t)dy. Sinces; andb, are independent vari-
ables, the PDF of their sum is the convolution product of

crete time signad; is a perfect white noise: if#j, a; anda; ~ their PDF. Furthermore, sinde=[0,T], we write s,=af(t)
follow the same law and are statistically independent. wherea is a random variable that takes its values in alphabet

Therefore, the PDF ofy, is written as pyt(y,t)
In this setting, signak, is a random signal. Signa is a  =1/NZN"!p,(y—I,f(t)). Hence, the mean & is given by
cyclostationary signal, withi as its fundamental period. This

is easily verified sinca; is zero mean and 1
E[zt]=f 9(y)py,(y,)dy= N; f 9(y)Po(y — Inf(t))dy.

Pyt 7 =Elssi = o (0Tt 0] 3 s(t=iT), ©
We note that this mean is zero if the nonlinearity character-

where*, stands for convolution with respect to variatije iStic is odd.
ando? is the variance of variables . The expression of the

covariance function o§; reveals the periodicity it of the

covariance. We evaluateI',(t,7)=E[zz.,]—E[z]E[z.,,] for t
For future calculations, it is worth examining the geometrice[0,T]. The second-order moment is given by
structure of the support of the covariance. Since it is peri-

odic, knowing the covariance fare[0,T] is sufficient to

knowing it for all t. Furthermore, sincé(t) is compactly E[tht”]:f 9(y1)9(Y2)Py, y,, (Y1.¥2:t, 1) dyady,
supportedI's(t, ) is zero outside the domain defined by

Covariance function

and we thus need the knowledge of the joint PDF of vari-
o<t<T ablesy; andy,,, for te[0,T]. Two cases appear in this
—t<r<T-t. ) calculation.

(1) ==0: In this case, the statistics are completely deter-

The support of the covariance function is represented in Fighined by the PDFpy (y,t). We therefore obtain
5. Note that this support is not only the support of the cova-
riance, but is also the “independence” support. In other s 1 ’
words, if (t,7) is not in that support, the random variabkgs Elz]= N? J 9(Y)“Po(y —Inf(t)dy ™
ands; , , are statistically independent.

We now consider a communication sigisacorrupted by ang the variance is obtained by subtracting from the expres-
an additive pure white noisg . The corrupted signal is writ-  sjon the square of the mean.

ten asy;=s;+b;. Since signak is cyclostationary and, (2) 7#0: Here, the calculation depends on the belonging

stationary, signay, is also cyclostationary, as demonstratedof t+ 7 to interval[0,T].

by the periodic structure of its covariance functiby(t, )

=Fs(t,T)+a't2)5(T). If we go into the spectral domain, the (1) t+74[0,T]: Sincete[0,T], since the noise is purely

spectral correlation of, reads white and since the;’s are independent and independent of
the noise, variables andz, ., , are independent. The second-

Sy(a,v)=a§F(v)F(a— V) (UT)Z8(a—(IIT))+ oid(a), order moment then factorizes to giveE[zz; ]
=E[z]E[z, ,]. The covariance is therefore equal to zero.

which shows that the contribution at nonzero cycle frequen- . .

cies comes only from signa} . In other words, the station- (2) t+7€[0,T]. Sincete[0,T], we can write

ary part of the signal appears only at the zero cycle fre- y=f(tathb,

quency. yt+‘r:f(t+7)a+bt+‘ri

Dt,T:
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wherea equalsl, with the probability 1N. Therefore, we
obtain for the joint PDF ofy, andy; . ,

Py, vt T(yl Ya.t,7)= J'pyt ,yH_T/a:x(yl Y2t )Pa(X)dX

=fpbt(y1—f(t)x)pbt+7
X (y2— f(t+ 7)x)pa(x)dx

1
52 [ poa=fwm,
X (yo—f(t+ 7)x)8(x—1,)dx

1
= N2 Poy1= FOI)Pe(y2 = f(t+ Do),

The second equality results from the independence between

b, and b, ., and the last one fronpbtzpbwz py,- The
second-order moment then reads

1
B2z .=y ; f 9(y9(y2)Po(y1— F(n)

8

We finally obtain the covariance fare[0,T] by subtracting

X pp(y2—f(t+7)l,)dy dy,.

from the expression the product of the first-order moments

E[z]E[z. ,]. This covariance is denoted E§(t,r).

The covariance for alt is obtained by periodizing the
preceding result. We recall that the fundamental domain i
given by

©)

Assuming thaf?(t,r) is continuous at= 0, the covariance
of z; can be put in the form

T (t,7)=1p, (t,NTD(t, )% >, S(t—iT)
' T i
+[I(t,0)~I7(1,0)]5(7). (10
The spectral correlation is then obtained by a two-

dimensional Fourier transform. Instead of writing it explic-
itly, we will illustrate it in the examples in the next section.

B. Input-output statistics for a static nonlinearity

When examining a transformation of a random signal, it is

of interest to study the input-output statistics for information

on the transformation. For example, in the linear case, it i€
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covariance reduces to the second-order moment

E[y:9(Yi+:)]-

Once again, we assume that the correlation is periodic of
periodT, so that we restrictto be in[0,T]. Now, if t+ 7 is
not in[0,T], the variables are independent, the second-order
moment factorizes, and it is therefore equal to zero since
is zero mean. For#0, if t+7e[0,T], we proceed as in the
preceding section, and

1
Ffz(t,r)=NZ Jylg(yz)pb(yl—f(t)ln)

X ppy2—f(t+7)l,)dy,dy,

1

52 101 [ 92Ips(ye f(t+ )y
(11)

For 7=0, we obtain T'y(t,0)=1NZ,fyg(y)ps(y

—f(t)l,)dy. Then, the cross-correlation for dlis obtained
by periodizing the previous result and reads

TyAt,7)=1p (,DIT(t,7)* 2 S(t=iT)
+[TyAt,0 =T (t,0]8(7). (12

To evaluate the transfer of energy between different frequen-
cies, the cross-correlation is then Fourier transformed to give

The spectral cross-correlation.

Since the general theory presented above is difficult to
interpret, we now turn to a specific example.

V. STOCHASTIC RESONANCE FOR COMMUNICATIONS
SIGNALS IN A THRESHOLD DEVICE

In this section, we make explicit calculations of the spec-
tral correlation of the output of static threshold devices for a
two-state communications signal. Precisely, the alphabet
used here isd={-1,+1}, and therefore we havig=—1
andl,;=+1.

Let 6 be a positive real number greater than 1, gfx)
=15 +((X). The output of such a nonlinearity is thus 1
when the output exceeds the threshéldnd is 0 otherwise.
Note that signas; alone cannot exceed the threshold since its
maximum amplitude equals 1.

Using Eq.(6), the mean of, for te[0,T] is expressed as

E[z]=3[Fp(— 6—f(t))+Fu(— 0+ f(1)].

quation (7) yields E[z2]=1/Fy(—6—f(t))+Fu(— 6

well known that the cross-correlation between the output and” f(t))]. Thus, the variance df, is given by
the input gives a method to identify the impulse response of

the transfer. In the nonlinear case we are studying, there is of

course no equivalent to the impulse respofise equiva-
lently, a transfer function However, input-output correla-

tion may indicate how energy is transferred from the input to

the output.

We are thus concerned with the quantity,(t, ) defined
as the covariance between random variablesand z;, .
=0(Y;+,). Sincey, is assumed to be of zero mean, this

[ ,(t,00=3[Fp(— 0—f(1))+Fp(— 0+1(1))]
X{1=[Fp(=0—f(1))+Fp(— 0+ f(1))]}.

Now, Eq.(8) gives for ¢,7) e D ,

E[zz+,]=3[Fp(— 0—f(t))Fp(— 6—f(t+ 7))
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We therefore obtain foFZ(t,7), after some algebra, 0.07 : ' ' ' ' ' ' ' '
T7(t,7)=F[Fo(— 0+ (1)~ Fp(~ 6 f(1))]
X[Fp(=0+1f(t+71)—Fp(—0—f(t+7)].

0.06

Finally, the covariance can be evaluated fortalising Eq. 0.05f
(10). I
We can see that the periodicity of the covariance appear
in the functionF,(x) which is nonlinear. It will thus be very
difficult in a general case to evaluate the spectral correlatior §
of z,. However, a simple case can be totally solvét) w"o ol

= 1;o7y(t). For this function,f(t)=f(t+r)=1, and the co- ’
variance reads, according to EGO),

0.04

0.02

L(t,7)=3[Fu(— 0+ 1) —Fu(— 60— 1)1°1p  (t,7)%,
0.01f

X, 8(t—iT)

+3[Fu(—0—1)+Fy(—6+1)]18(7).

FIG. 6. Amplitude of the cycle correlation at cycle frequency
Let H(a,v) be the two-dimensional Fourier transform of k/T for the output of the simple threshold device attacked by a
1, (t,7). We then have two-state communications signal corrupted by additive Gaussian
LT noise. Functionf(t) is the characteristic function of0,T]. 6
1 =1.01:---, 6=1.2: -, =1.5: - - (arbitrary units.
SZ(CY,V): Z[Fb(_ 0+ 1)

cycle correlation passes through a maximum. This fact is
= -DP=S H ew| 8 0 = mperpreted asstochastic resonancer more precisely as
T4 T T noise induced threshold crossings. This can be understood as
1 follows. When the noise is low, since the signal alone cannot
+ Z[Fp(—0-1)+Fp(—0+1)]8(a). exceed the t_hreshold, the _output will not effl_(:lently_reflec_t
2 the cyclostationarity of the input. When the noise variance is
. ) ] _ high, the input signal passes the threshold “very” randomly,
Hence, in this case, the amplitude of the spectral correlatiog,gq the output is almost stationary. In between these ex-
is dependent on the cycle frequenkdT only through the  {remes;, there is an optimal variance of the noise for which
termH(k/T,v). the output is the most cyclostationary.
_ _ The amplitude of the spectral correlation for the Gaussian
Gaussian noise case is quite low(see Fig. . However, the ratio of that

Let e(x) = 1/\/fo_xe*“2’2du. Then, since the noise has amplitude to the amplitude at cycle frequency zero may not

a varianceaﬁ, the cumulative density function reaé(x) be so low. This is shown in Fig. 7, a two-dimensional graph

—e(x/oy). Whenf(t) is the characteristic function §6.T], Qf the ratio as a function of, and 6. As can be seen in the
the spectral correlation is given by figure, the lower the threshold, the greater the effect of SR;

since the amplitude of the signal is 1, a small quantity of

1| [—6+1 -0-1\1%1 noise is needed to allow a crossing of the threshold, and the
Slav)=7 e( p —e( p ” T cyclostationarity of the input is nearly conserved. This ratio
b b may then be interpreted as an index quantifying cyclostation-
i i arity. This interpretation comes from the fact that the zero
x Z H T 6| a— T cycle frequency corresponds to the stationary part of the sig-

nal, whereas nonzero cycle frequency reveals cyclostationar-

ity. Therefore, the higher this ratio, the “higher” the cyclos-
5(a). (13 tationarity of the signal.

It is also interesting to study the behavior of the spectral

Figure 6 shows the amplitude of the spectral correlation agorrelation at the zero cycle frequency. We recall that
cycle frequency T as a function ofr,, omitting the factor H(«,») is the two-dimensional Fourier transform of
H(k/T,v). The graph is repeated for three valuegio1.01,  1p (t,7)=1pom(t) Lor(t+ 7). It is then easy to calculate
1.2, and 1.5. For a small noise standard deviation, the amplexplicitly H(«,v) which can be writterF(v)F(a— v) with
tude is very small. When the standard deviation is high, thd=(v) =exp(—imvT)sin(mvT)/(7wv). Therefore, the spectral
amplitude is also small. In between, the amplitude of thecorrelation at the zero cycle frequency regsise Eq(13)]

1

2

—-6+1

Op

e +e

(—9—1
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FIG. 7. Ratio of the amplitude of the spectral correlation at 0 5 10 0 05 10
. [
cycle frequenck/T over the amplitude at cycle frequency O for the b b

output of the simple threshold device attacked by a two-state com- ¢ g Amplitude of the spectral correlation at cycle frequency

_munications signal (_:orrupted by additivg Gausgian noise. The ratiB andv=0 for the output of the simple threshold device attacked by

IS plotted asa function O’ﬁfb and 0._Funct|onf(t) is the character- a two-state communications signal corrupted by additive Gaussian

istic function of[0,T] (arbitrary unit3. noise. Functionf(t) is the characteristic function of0,T]. @
=1.2. PeriodT takes different values on which the existence of a
maximum dependgarbitrary units.

1[ [—6+1 —0—1\1%1]sin(7v)|?
S0m=gle e T T
+ 1 el — o+1 te _0_1”_ appears that there exists a maximum only for sufficiently
2 s o high T's. Since looking at thew=0 slice in the spectral

correlation is equivalent to looking at the “stationarized”

spectrum, we see that we can miss the effect: this is not
The first term of the expression presents a maximum as possible when looking at nonzero cycle frequencies.
function of o, whereas the second does not. Therefore, it is To see the effect of stochastic resonance at the zero cycle
not always sure that a maximum f6g(0,v) as a function of frequency, one has to normalize the spectral correlation of
oy, exists; it depends off. For #=1.2, we show in Fig(8) the output by the spectral correlation of the input. For
S,(0,0) plotted againstr, for several values of period. It =0 andv=0, this ratio reads

80,00 (T4 {el(—0+1)/ap]—e[(——1)/ap]}2+ 3 {e[(— 6+ 1)/ o]+ e[ (— 6—1) o]}
S,(0,0 T+op '

This is shown in Fig. 9 where the effect is now seen. Note e[(—0+1) op]+e[(—6—1) o]
that the ratio can take values greater than one. 252 ;
The limiting caseT—0 is interesting. In this case, the b
input processy; tends to be a pure white noise of PDF
Py (¥)= pp(y— 1)+ pp(y+1)]. Therefore, this process is
stationary, and we observe again “noise induced threshol@vhich can take values greater than one. The noise induced
crossings” for the output, . The effect is shown by the ratio crossings for this limit case have also been studied with in-
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T=5 T=1 maximum. Thus, this correlation can also be used to reveal
0.1 0.25 . :
the effect, and is close to the input-output coherence measure
0.08 02 [12].
Furthermore, it can be shown that the cross spectral cor-
0.08 » 0.15 relation reveals the correlation between frequeneya of

the input with the frequency of the output. It could there-

0.04 o fore be used to understand how the energy is transferred
0.02 0.05 from the input to the output.
00 5 10 00 5 10
s, o, VI. DISCUSSION AND CONCLUSION
035 =05 i T=0.1 We have shown that stochastic resonance can occur for
cyclostationary stochastic processes. This fact has been dem-
03 12 onstrated on widely used signals: communications signals.
0.25 1 To study the effect of SR, we work with the toolbox of
02 0.8 cyclostationary stochastic processes. We have shown that
0.15 0.6 this toolbox is appropriate to study SR. We have especially
01 04 insisted on the fact that the averaging of the correlation func-
0.05 02 tion which |s_usually performed in the SR Ilteratgre may lead
| to a loss of information. If performed on certain examples,
% 5 10 % 5 10 the average of the correlation function may cause the SR
% % effect to be overlookedf we just look at the spectral density

of the outpur. However, looking at nonzero cycle frequen-
cies of the output, the effect is always revealed.
The importance of taking into account the entire spectral
rrelation(and the entire cross spectral correlafialso lies
in the fact that the spectral correlatigand cross spectral
correlation) quantifies the statistical interactions that may ex-
ist between frequencies of a signal. This is not the case for
the classical spectrurfor cross spectrumwhich assumes
that frequencies are uncorrelated. Therefore, using cyclosta-
gionarity tools can provide more information concerning the
physics of SR.

We note that the cyclostationarity of signals involved in
stochastic resonance has been taken into account in some

FIG. 9. Ratio of the amplitude of the spectral correlation at
cycle frequency 0 and=0 of the output to that of the input, in the
case of the simple threshold device attacked by a two-state (:omm%-0
nications signal corrupted by additive Gaussian noise. Fungfign
is the characteristic function §D,T]. 6=1.2. Stochastic resonance
is now clearly seemarbitrary units.

formation theory tool$15,16 where the effect is quantified
using the input-output mutual information.

The cross-correlation between the input and the output i
worth evaluating. After using Eg$11) and(12), we obtain,

for f(t) = l[O,T](t)a

11 [—6+1 —0—-1 theories. For example, Jung and Han@g@] use Floguet-
Fyz(t,r)zz e —e( ) 1p, T(t'T)*t type solutions of the Fokker-Planck equation in order to
Tb b ' evaluate correlation functions and spectral densities in the
1 —(6-1)2202 case of SR in the quartic potential. However, they again av-
. O-be b 1 4 13 1 H ” 41
XD S(t—iT)+=| ———— erage in time to get “stationarized” quantities. Anyway, we
i 2 V2w believe that the extension from static nonlinearities to dy-

namical systems, as described in this paper, could be done

- 2 r2 .
L T8 (o+ 1520, s using the Floquet theory.
om (7). We now examine the assumption used in Sec. IV A which

states that the output signal of a static nonlinearity attacked

The spectral cross-correlation is the two-dimensional FouriePy @ cyclostationary signal is cyclostationary, with the same
transform of the expression and reads in the Gaussian cagé€riod of cyclostationarity. This assumption is true for most

considered of the nonlinearities we can play with. However, some non-
linearities will make that assumption false. For example, a
1/ [—6+1 —0—1\]1 squarer may double the fundamental frequency and therefore
Sydav)=5| e — )—e( pn ”T halve the period. In that case, our calculations remain valid
b b since ifT/2 is a period of cyclostationarityl; is also a period.
i i 1 obef(ofl)Z/erﬁ But some cases may be more troublesome. Consider a two-
XZ H(f,v) 5<a— T) + ST state communications signét-1) built with function f(t)
' Vam =1o7(t). If this signal is squared, it is obviously not cy-
—(6+1)%120? clostationary, since it is constant. But when corrupted by
g P 8(a). noise, it will be cyclostationary with periot/2. Therefore,
2m the assumption can be viewed as a reasonable assumption.

The examples presented in this paper are very simple, since
This cross-correlation also reflects the stochastic resonanaee restricted ourselves to the case of threshold devices. As
effect, since;{e[(— 6+ 1)o,]—€e[(— #—1)/oy,]} presents a already mentioned, we studied only noise induced threshold
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crossingg 8]. Several things must be done to show the im-iters to make decisions, and that SR for communications sig-
portance of cyclostationarity in SR. The more importantnals may be useful in practice.

theoretically is to investigate SR for cyclostationary stochas-

tic processes in dynamical systefmge are currently working ACKNOWLEDGMENTS

in that direction for discrete time signals, and SR does oc- The authors gratefully acknowledge A. Bulsara and F.
cur). Finally, we would like to mention that communications Chapeau-Blondeau for reading preliminary versions, and
systems often involve high nonlinearities, such as hard limMartha Grand.
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