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Cyclostationarity and stochastic resonance in threshold devices
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38 402 Saint-Martin d’He`res Cedex, France
~Received 30 November 1998!

This paper intends to show how the theory of stochastic cyclostationary processes can be used to study
stochastic resonance in static nonlinearities. The statistic we use is the covariance function of the output. The
covariance is a second-order cumulant and is not dependent on by the mean. Furthermore, this covariance is
not averaged in time as is usually done in the stochastic resonance literature. A two-dimensional Fourier
transform of the covariance gives the so-called spectral correlation. The spectral correlation depends on the
usual harmonic frequency and on another frequency, called cycle frequency. The cyclostationarity of a signal
makes the spectral correlation discrete in the cycle frequency. The zero cycle frequency corresponds to the
usual ‘‘stationary power spectrum’’ used in the stochastic resonance literature. We thus exploit all the second-
order statistical information. We first revisit classical stochastic resonance in threshold devices using the
spectral correlation, showing that the effect is seen for nonzero cycle frequencies. The cases of additive and
multiplicative noise are detailed. We then study stochastic resonance in threshold devices for communication
signals. These signals are usually modeled as stochastic cyclostationary processes. We show that stochastic
resonance occurs, and the phenomenon is quantified using the spectral correlation of the output: The amplitude
of the spectral correlation at nonzero cycle frequencies presents a maximum as the power of the input noise is
increased.@S1063-651X~99!08405-6#

PACS number~s!: 05.40.2a, 02.50.2r
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I. INTRODUCTION

Stochastic resonance is usually described as a nonli
phenomenon that allows an improved transmission of a
nal by interaction with noise. In the past 15 years, this eff
has been the subject of much research, both theoretical
experimental. The main theories of stochastic resonanc
well as experimental evidence can be found in many revie
@1–4#.

Several theories exist that describe stochastic resonan
dynamical systems. Unfortunately, since the problem is
ficult, only approximate theories have been developed~e.g.,
adiabatic theory@5#, linear response theory@1–4#, etc.! How-
ever, for static nonlinearities, for which stochastic resona
has been reported quite recently@6–8#, exact results may be
written in certain circumstances, such as whiteness of
noise.

For that case, recent papers by Chapeau-Blondeau
Godivier @9,10# proposed a systematic treatment of stoch
tic resonance for periodic signals corrupted by additive wh
noise. Their theory is based on the fact that the output of
nonlinearity may be viewed as a periodic signal plus a p
turbation. Using the Fourier series of the periodic signal a
the second-order statistics of the perturbation, they were
to define clearly the signal-to-noise ratio at the harmonics
the output. Evidence of stochastic resonance was repo
and their theory was successfully confronted with an exp
ment.

Another interesting effect of stochastic resonance c
cerns ‘‘aperiodic’’ signals, such as harmonic noise, sp
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4 76 82 63 84. Electronic address: Bidou.Amblard@lis.inpg.fr
PRE 591063-651X/99/59~5!/5009~12!/$15.00
ar
g-
t
nd
as
s

in
f-

e

e

nd
-
e
e

r-
d
le
f
d,

i-

-
e

trains in neurons@11,12#. The effect of stochastic resonanc
was first quantified using an input-output coherence mea
@12#, and later by information theory tools@13–16#. For ex-
ample, it is shown that the capacity~in the information
theory sense! of a static nonlinear channel presents a stoch
tic resonance effect. But the capacity of a channel is also
‘‘input-output’’ measure, since it represents the maximum
the so-called transinformation or mutual entropy. In the
works, the signal is called aperiodic. However, this termin
ogy is a little bit confusing, since signals are often cons
ered as stochastic. They are in fact often cyclostationa
Their statistics are periodic with respect to the reference t
@17#.

The property of cyclostationarity is common to almost
works concerning stochastic resonance. But surprisingly
has not been taken into account, since most of the wo
reported in the literature eliminate cyclostationarity by p
forming a coherent average in time of the statistics of int
est. This average is equivalent to a ‘‘stationarization’’
imposing on the signal a random uniformly distributed pha
at the time origin.

However, cyclostationary signals are recognized to be
great importance to the signal processing community@18#.
This is explained by the great number of engineering ap
cations where cyclostationary signals occur: rotating m
chines, communication systems, and in general any app
tions where a clock~which can be hidden! rules the
phenomena.

The aim of this paper is thus to explore the question
whether cyclostationary signals can lead to stochastic re
nance effects when they are corrupted by noise and t
nonlinearly transformed. Furthermore, we study static n
linearities. The case of dynamical systems is under inve
gation.
5009 ©1999 The American Physical Society
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We will present in Sec. II the tools needed to manipul
cyclostationary stochastic processes. These tools are no
ferent from those classically used~covariances!, but they will
be totally exploited in the rest of the paper, contrary to
literature where they are averaged to handle stationary q
tities. The main tool we use is the so-calledspectral corre-
lation, which is the two-dimensional Fourier transform of th
covariance function. The spectral correlation is then a tw
dimensional function. The first variable is the traditional fr
quency, whereas the second one is called thecycle fre-
quency. When a process is cyclostationary, its covarian
function is a periodic~or almost periodic! function of the
reference time. In that case, the cycle frequency takes
discrete values, revealing the periodicity of the signal a
lyzed. The spectral correlation at the zero cycle freque
~infinite period in the signal! is equivalent to the ‘‘stationar
ized’’ ~or averaged! spectrum that is used in the stochas
resonance~SR! literature. In this section, we also plead f
the use of the covariance function instead of the correla
function. The covariance is acumulantbased statistic, and
therefore only retains second-order statistical features~it
eliminates the contribution of the mean!.

In Sec. III, we revisit classical stochastic resonance
static nonlinearities within the framework of cyclostationa
processes. Stochastic resonance is studied for determin
periodic signals corrupted by additive noise as well as m
tiplicative noise. We show that the output of a thresho
device attacked by such signals is cyclostationary. Furth
more, we show that stochastic resonance is revealed by
amining the spectral correlation amplitude at nonzero cy
frequencies. Working with cumulants rather than mome
leads to strange results: For example, in the spectrum o
output signal, the usual peaks superimposed on the b
ground noise spectrum disappear. This is due to the can
ing of the mean in the cumulant calculation. In addition, t
shows that results described in the SR literature concern
evaluation of the effect on the first-order statistics.
After showing how cyclostationarity can be used to quan
classical stochastic resonance, we turn to the problem of
termining if SR can occur for cyclostationary stochastic p
cesses. In Sec. IV, we examine signals that are widely u
in communication systems. Basically, these signals are m
of sequences of letters that are randomly taken into a disc
alphabet. Each letter is supported by a function of durationT.
Hence, the time axis is cut into pieces of lengthT, each of
which supports a letter. The signals are zero mean and
clostationary: Their statistics are periodic in the referen
time. Since many communication systems have nonline
ties such as threshold devices, we study what happens
noisy communication signal when it passes through a st
nonlinearity. Exact calculations are performed on some
amples, and stochastic resonance is revealed in the spe
correlation of the output. Furthermore, we show that look
at only the stationarized spectrum may not reveal the eff
whereas considering nonzero cycle frequency always rev
the effect.

To conclude the paper, we make some remarks on
work developed here and give some ideas for future wor

II. BASICS ON ALMOST-CYCLOSTATIONARY SIGNALS

Authors working on stochastic resonance have of cou
noted that the signals involved are nonstationary, since t
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statistics are in general not invariant under a shift of
origin of time. In fact, statistics involved in stochastic res
nance are often periodic in time@17,18#. In order to define
the power spectrum of the signals, an average over one
riod is now usually made. This average has the effect
‘‘stationarizing’’ the signals under consideration. Indeed,
can be shown that this operation is equivalent to imposing
the signals a random initial phase, uniformly distributed o
period. The aim of this section is to show that this operat
is ‘‘ ad hoc,’’ and that performing it creates a loss of info
mation. To discuss this point, we now present~or recall!
some facts on the theory of cyclostationary stochastic p
cesses.

Almost cyclostationarity

Roughly speaking, a functionf (t) is almost periodic if it
accepts a so-called Fourier-Bohr decomposition,f (t)
5Sck exp(2ipfkt) where the sum is made over the setA
5$ f k such thatckÞ0%. This set is finite or infinite but
countable. Furthermore, the frequencies involved are no
general a multiple of a fundamental harmonic. Coefficie
ck are obtained via ck5 limT→1`(1/T)*0

Tf (t)exp
(22ipfkt)dt. Of course, periodic functions form a subclass
almost-periodic functions~in that case, the Fourier-Bohr de
composition reduces to the Fourier series expansion!.

Let xt be a stochastic process. This process is said to
strictly almost cyclostationary if the joint probability densi
function ~PDF! $pxt,xk1t1 ,...,xt1tn

(x0 ,x1 ,...,xn ;t,t1 ,...,tn)% is

an almost periodic function oft, and this is for all integersn
and all lagst i . This implies that the statistics of the proce
are almost periodic with respect tot.

Let Mx(t)5E@xt# and Gx(t,t)5Cov@xt ,xt1t# be the
mean and the covariance function ofxt , respectively (E@ #
stands for the mathematical expectation or set average,
Cov@ # is the covariance operator!. If xt is almost cyclosta-
tionary, then its mean is in general almost periodic, and
covariance almost periodic with respect tot. If the mean and
the covariance are only periodic, we will say that the proc
is cyclostationary~more exactly we should say ‘‘second
order cyclostationary’’!.

Note that we work here with the covariance instead of
second-order moment. This is done to eliminate from
second-order statistics the contribution of the first ord
Consider the following simple example, of great interest
stochastic resonance. Letxt be the sum of a sinusoid
sin(2pnt) and a stationary, zero mean noisebt . Then,Mx(t)
is periodic and further, the second-order moment re
E@xtxt1t#5sin(2pnt)sin@2pn(t1t)#1Gb(t). Therefore, the
correlation is periodic and one can conclude that the proc
is cyclostationary. However, the covariance is equal to
covariance of the noise, and hence is not periodic. T
shows that the cyclostationarity property of this signal
only due to its mean. Therefore, to understand the effec
cyclostationarity, we must work with cumulants instead
moments~the covariance is the second-order cumulant!. This
remark makes it possible to define an almost cyclostation
ity up to ordern. A stochastic process is said to be almo
cyclostationary up to ordern if its mean is almost periodic
and if its cumulant functions Cum@xt ,xt1t1

,...,xt1t i
# are al-

most periodic functions int for i 51,...,n21. As an example,



y-

it

o

ct
e

i
a
t f
l

io

ra
d
in
e

io
y

n
n

it
ctr

u
of

r
d

lly
is
is

i
s
e

st-

.
nce

d

.
dea

n
es

at
al

ies
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the process sin(2pnt)1bt described above is a first-order c
clostationary process.

Coming back to the covariance, if it is almost periodic,
admits a Fourier-Bohr series expansion in the variablet.
Therefore, if we do a two-dimensional Fourier transform
the covariance (a↔t, n↔t), we obtain a quantity which
can be written as

Sx~a,n!5 (
f kPA

s~ f k ,n!d~a2 f k!,

whereA is finite or infinite but countable. FunctionSx(a,n)
is discrete ina and continuous inn. It is called thespectral
correlation. Furthermore, frequencya is called acycle fre-
quency. The term ‘‘spectral correlation’’ comes from the fa
that the spectral correlation examines the correlation betw
the harmonic components ofxt at frequenciesn anda2n. It
is well known that for a stationary process, this correlation
zero if the frequencies are different. Hence, for a station
process, the spectral correlation is equal to zero, excep
a50, for which Sx(0,n)5s(0,n) reduces to the classica
power spectrum. Furthermore, if the process is cyclostat
ary with fundamental periodT, then we can show that

Sx~0,n!5E F lim
T→1`

1

T E
2T/2

T/2

Gx~ t,t!dtGe22ipntdt.

This result illustrates what is usually done in the SR lite
ture: averaging the covariance to define a ‘‘stationarize
spectrum. But in fact, this operation corresponds to tak
the slicea50 in the spectral correlation. This explains th
loss of information we mentioned earlier.

Finally, note that estimators of the spectral correlat
exist @19#, and therefore the spectral correlation is not onl
theoretical tool but can also be used in practice.

III. REVISITING CLASSICAL SR
WITH CYCLOSTATIONARY PROCESSES THEORY

The aim of this section is to examine stochastic resona
in static nonlinearities using the framework of cyclostatio
ary processes.

We again insist on the fact that we will completely explo
the second-order statistics of the signal using the spe
correlation. Furthermore, the spectral correlation is a cum
lant ~covariance! and is therefore unpolluted by the mean
the signals.

We consider a deterministic almost-periodic signalst cor-
rupted by a pure white noisebt . The resulting signalyt then
passes through a static nonlinearity whose characteristic
sponse is denoted byg. We consider both the additive an
multiplicative corruption cases.

‘‘Pure’’ white noise means that for all integersn, the vari-
ablesbt1

,...,btn
are statistically independent and identica

distributed. Note that these restrictions make the no
strictly stationary. We will furthermore assume that the no
has zero mean, and that its probability density functionpb(x)
is even ~this assumption can be easily eliminated and
adopted only for convenience!. The variance of the noise i
denoted bysb

2. In what follows, we need the cumulativ
density function~CDF! of the noise: It is defined asFb(x)
f
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5*2`
x pb(y)dy. Note that the evenness ofpb(x) implies that

12Fb(x)5Fb(2x).

A. SR for additive noise

In this section, we examine what happens to an almo
periodic signalst corrupted by an additive white noisebt ,
when passing through a static nonlinearity. Letyt5st1bt
andzt5g(yt). The mean ofzt is given by

Mz~ t !5E g~y!pb~y2st!dy. ~1!

To evaluate the covariance function ofzt , we use the fact
that bt is a pure white noise:bt and bt1t are statistically
independent, and thereforeyt andyt1t are also independent
Any static nonlinearity preserves this independence; he
we obtain

Gz~ t,t!5Cov@zt ,zt1t#5Cov@zt ,zt#d~t!5Var@zt#d~t!.
~2!

The variance ofzt is then provided by

Var@zt#5E g~y!2pb~y2st!dy2Mz~ t !2. ~3!

Note that Eqs.~1!–~3! show that, in general, the mean an
the covariance function ofzt are periodic with respect tot. zt
is therefore in general cyclostationary, at least at order 2

We cannot go further in this general case. To get an i
of what happens, we now turn to a simple nonlinearity.

Simple threshold device

Let us considerg(x)51[u,1`[ (x) where u>1, and the
periodic signalst5b( i PZ1@2h/2,h/2#(t2 iT) where 0,b,1
and 0,h<T/2. 1I(x) stands for the characteristic functio
of intervalI. Functionst is even and admits the Fourier seri
decompositionst5a0/21(k>1ak cos(2pkt/T) with

a05
2hb

T
,

ak5
2b

pk
sinS pkh

T D .

According to Eq. ~1!, the mean of zt reads Mz(t)
5*u

1`pb(y2st)dy which leads to Mz(t)5Fb(2u1st).
Then, using Eq. ~3!, we have Var@zt#5Fb(2u1st)2
Fb(2u1st)

2, which can be written as Var@zt#5Fb(2u
1st)Fb(u2st).

With the periodic signal considered, it is of interest th
the mean and the variance ofzt have the same form as sign
st , since they are a static nonlinear transformation ofst .

Thus, the variance ofzt can be written as

Var@zt#5bz(
i PZ

1@2h/2,h/2#~ t2 iT !1Fb~2u!Fb~u!,

with bz5Fb(2u1b)Fb(u2b)2Fb(2u)Fb(u). There-
fore, the variance of the output admits the Fourier ser
expansion Var@zt#5a0

z/21(k>1ak
z cos(2pkt/T) where
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a0
z5

2hbz

T
12Fb~2u!Fb~u!,

ak
z5

2bz

pk
sinS pkh

T D .

The spectral correlation ofzt readily follows: SinceGz(t,t)
5Var@g(yt)#d(t), after a two-dimensional Fourier trans
form, we obtain

Sz~a,n!5S hbz

T
1Fb~2u!Fb~u! D d~a!1 (

k>1

bz

pk
sinS pkh

T D
3FdS a2

k

TD1dS a1
k

TD G .
Therefore, the spectral correlation of the output has a disc
spectrum of cycle frequencies, each of which supports a c
stant amplitude as a function of the harmonic frequencn
~even fora50). Hence, the discrete spectrum usually se
in SR has disappeared. Nevertheless, the amplitude of
spectral correlation at a given nonzero cycle frequency p
sents the features of stochastic resonance, as shown in F
In the graph, obtained for a Gaussian noise and forh
5T/2, we showbz as a function ofsb , for some values ofb
and u51.2. The classical maximum characteristic of s
chastic resonance is clearly seen. When the noise is very
there is nearly no signal at the output, and the spectral
relation is very low. If the noise is very powerful, the sign
crosses the threshold ‘‘very randomly,’’ and the cyclos
tionarity of the input is lost: The output tends to be statio

FIG. 1. Stochastic resonance in a threshold device attacked
periodic signal additively corrupted by a Gaussian white noise. A
plitude bz of the spectral correlation at a given cycle frequen
plotted as a function of the standard deviation of the noise fou
51.2 andb50.1: -, b50.5: - -, b50.9: ¯ . These curves have
maximum which reveals stochastic resonance~arbitrary units!.
te
n-

n
he
e-
. 1.

-
w,
r-

-
-

ary. Between these extremes, there is an optimal value osb
such that the output is the ‘‘most’’ cyclostationary.

We also observe in Fig. 1 that the strength of the eff
decreases asb decreases. In the limitb→0, we obtainbz
→0, and the output is no longer cyclostationary. This is tr
since the input is stationary forb50 and the system is static
But for b→0, we obtainSz(0,n)5Fb(2u)Fb(u) which pre-
sents a maximum as a function ofsb . This again shows tha
there is stochastic resonance, but for a stationary input. T
for threshold systems the term stochastic resonance is no
proper term. As proposed by Gammaitoni@8#, the effect here
should be called ‘‘noise induced threshold crossings’’
stead of stochastic resonance, because no matching cond
between two time scales is needed. Indeed, we observe
that the effect is independent of the frequency we use. N
ertheless, we will continue to use the term stochastic re
nance.

We now come back to the disappearance of the disc
spectrum in the variablen. Usually, this discrete spectrum i
observed when we work with the ‘‘stationarized’’ spectrum
i.e., the slicea50 of the spectral correlation. However, th
termSz(0,n) does not present this discrete spectrum. This
because we work with cumulants rather than moments.
obtain the second-order moment, we must writeE@ztzt1t#
5Gz(t,t)1E@zt#E@zt1t#. Therefore, if we Fourier trans
form this expression with respect to both variables, we
tain the spectral correlation plus a term which will presen
discrete spectrum fora50. In this case, we would procee
as is usually done in the SR literature.

Instead, we first analyze the mean of the signal

Mz~ t !5Fb~2u!1@Fb~2u1b!2Fb~2u!#

3(
i PZ

1@2h/2,h/2#~ t2 iT !,

which is periodic and whose Fourier series expansion re

Mz~ t !5S h@Fb~2u1b!2Fb~2u!#

T
1Fb~2u! D

1 (
k>1

Fb~2u1b!2Fb~2u!

pk
sinS pkh

T D
3FdS a2

k

TD1dS a1
k

TD G .
In Fig. 2, we plot the ratio@Fb(2u1b)2Fb(2u)#/sb ~am-
plitude of the fundamental! as a function ofsb , for some
values ofb andu51.2 @note that the amplitudes of the ha
monics are the same, except a factor of sin(pkh/T)/(kp)]. We
again observe SR here. This corresponds to the classical
of observing SR, since the above-mentioned ratio is roug
the signal-to-noise ratio~SNR! at the fundamental of the
output. Note that this approach has been extensively u
@9,10,4#. Chapeau-Blondeau@10# also studies the gain in
terms of SNR between the input and the output at a gi
harmonic of the mean signal. The output SNR is defined
the ratio of the amplitude squared at a harmonic by the te
porally averaged variance, which is given in our framewo
by Sz(0,n), since averaging is equivalent to considering t

a
-
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a50 slice in the spectral correlation. Note also that ga
~output SNR/input SNR! greater than one, as reported b
Chapeau-Blondeau@10#, have also been observed during t
development of this work.

This discussion shows that the stochastic resonance e
studied here is a first-order effect, i.e., it is due to the f
that the mean of the input signal is periodic. Of interest is
observation of SR in the spectral correlation, which is
second-order statistical quantity ‘‘unpolluted’’ by the firs
order statistics. This is a purely nonlinear effect.

We now turn to a second example of SR for determinis
signals, but for which the input signal is zero mean.

B. SR for multiplicative noise

Let st be an almost periodic deterministic signal, assum
to be strictly positive and of maximum amplitude lower th
1. Consideryt5stbt . Once again,bt is a pure white noise
with zero mean and variancesb

2. Signal yt is then almost
cyclostationary, and its covariance function readsGy(t,t)
5sb

2st
2d(t). Note thatyt is zero mean, so that the approa

developed by Chapeau-Blondeau and Godivier@9,10# cannot
be applied. The power spectrum of the input defined as
Fourier transform of the averaged covariance is flat: It d
not present any peaks.

We study the outputzt of the simple threshold devic
g(x)51[u,1`[ (x) attacked byyt . The mean ofzt is found to
be E@zt#5Fb(2u/st). Now, note that variableszt andzt1t
are statistically independent. Hence, the covariance ozt
readsGz(t,t)5Var@zt#d(t). The variance ofzt is given by
Var@zt#5Fb(2u/st)Fb(u/st). Hence,zt is almost cyclosta-
tionary since its mean is almost periodic, as is its covarian
To obtain the spectral correlation, we then must perform

FIG. 2. Stochastic resonance in a threshold device attacked
periodic signal additively corrupted by a Gaussian white no
@Fb(2u1b)2Fb(2u)#/sb plotted as a function of the standar
deviation of the noise~‘‘SNR’’ for E@zt# at a given harmonic!. u
51.2 andb50.1, -; b50.5, - -; b50.9, ¯ ~arbitrary units!.
s

ct
t
e
a

c

d

e
s

e.
e

Fourier series decomposition ofFb(2u/st)Fb(u/st), which
is far from being an easy task.

We thus consider the following simple example:st5
1
2

1b( i PZ1@2h/2,h/2#(t2 iT) where 0,b, 1
2 and 0,h<T/2.

Note that this function is never equal to zero. Furthermo
this function is even and admits the Fourier series decom
sition st5a0/21(k>1ak cos(2pkt/T) with

a05
2hb

T
11,

ak5
2b

pk
sinS pkh

T D .

Now, sincest is constant by intervals,Fb(2u/st) is also
constant on the same intervals. In other words, Var@zt#
5Fb(2u/st)Fb(u/st) has the same structure asst and may
be written Var@zt#5Fb(22u)Fb(2u)1bz( i PZ1@2h/2,h/2#(t
2 iT) with

bz5FbS 2
u

1/21b DFbS u

1/21b D2Fb~22u!Fb~2u!.

Hence, the Fourier series expansion of Var@zt#5
Fb(2u/st)Fb(u/st) is a0

z/21(k>1ak
z cos(2pkt/T) with

a0
z5

2hbz

T
12Fb~22u!Fb~2u!,

ak
z5

2bz

pk
sinS pkh

T D .

Therefore, the spectral correlation ofzt reads

Sz~a,n!5S hbz

T
1Fb~22u!Fb~2u! D d~a!

1 (
k>1

bz

pk
sinS pkh

T D FdS a2
k

TD1dS a1
k

TD G .
If we examine the evolution ofbz as a function ofsb , we
will observe the characteristic of stochastic resonance. H
ever, in this case, since the inputyt has a periodic covari-
ance, it is interesting to compare the spectral correlation
the output to the spectral correlation of the input.

Since Gy(t,t)5sb
2st

2d(t), the spectral correlation ofyt

has the same structure as that ofzt , and reads

Sy~a,n!5sb
2S hby

T
1

1

4D d~a!

1sb
2(

k>1

by

pk
sinS pkh

T D FdS a2
k

TD1dS a1
k

TD G ,
with by5( 1

2 1b)22 1
4 .

To compareSz(a,n) and Sy(a,n) at cycle frequency
k/T, it suffices to study the ratiobz /(bysb

2). We perform
this comparison for the Gaussian case.

Figure 3 shows the evolution ofbz /(bysb
2) as a function

of the standard deviation of the noisesb in the Gaussian
case. This figure is obtained foru51.2 and for b

a
.



-
m

e

udy

of
to-
the
s a

hes.
ents
on-
ec-

ut-
rly
re-
he
ap-
an

stic
by

tic
red

ous
con-
her-
stic

and
tics

ded
asi-
f
,

etter

r-
e

g

nse.

he
n

t
dis-

by
is
of
ion

by
ite

5014 PRE 59PIERRE-OLIVIER AMBLARD AND STEEVE ZOZOR
50.1, 0.25, 0.45. Figure 4 represents the ratio (bz /bysb
2) as

a function ofu and sb for b50.1. These figures again ex
press stochastic resonance, or to be more precise, as we
tioned earlier, ‘‘noise induced threshold crossings.’’

Finally, note again that we do not have a discrete sp

FIG. 3. Stochastic resonance in a threshold device attacked
periodic signal multiplicatively corrupted by a Gaussian white no
ratio bz /(bysb

2) plotted as a function of the standard deviation
the noise~ratio between the amplitude of the spectral correlat
before and after the nonlinearity!. u51.2 andb50.1, -; b50.25,
- -; b50.45,¯ ~arbitrary units!.

FIG. 4. Stochastic resonance in a threshold device attacked
periodic signal multiplicatively corrupted by a Gaussian wh
noise. Two-dimensional graph of the ratiobz /(bysb

2) as a function
of u andsb for b50.1 ~arbitrary units!.
en-

c-

trum, and the classical approach to SR would be to st
E@zt#, whose Fourier coefficients normalized bysb present
the feature.

To conclude this section, we see that the framework
cyclostationary processes offers an alternative view of s
chastic resonance. It allows a complete description of
statistics of the output of the nonlinear system and provide
deeper understanding of SR than do traditional approac
This understanding also uses cumulants rather than mom
to decouple statistics of different orders. This can cause c
fusion since we have seen that the traditional power sp
trum with peaks no longer exists: The periodicity in the o
put seems to be eliminated. In fact, this periodicity is clea
depicted by the structure of the spectral correlation that
flects the cyclostationarity of the output. Therefore, t
framework proposed here goes farther than traditional
proaches that actually only study the periodicity of the me
of the output signal.

To continue our development, we now consider stocha
resonance for stochastic processes additively corrupted
noise, and we then enter the field of ‘‘aperiodic’’ stochas
resonance. This kind of SR has already been conside
@20,11,12,14,15,10# ~see also@4#, and references therein!. In
most of these works, the term aperiodic is quite ambigu
since signals are in general cyclostationary, and can be
sidered as special cases of communication signals. Furt
more, input-output measures are used to quantify stocha
resonance~e.g., coherence, transinformation!. In the follow-
ing sections, we study general communication signals
quantify stochastic resonance using only the output statis
of the system.

IV. COMMUNICATION SIGNALS AND STATIC
NONLINEARITIES

In communication, a message to be transmitted is co
before emission. There exist many ways of coding, but b
cally, elements of the code are chosen in an alphabet oN
letters$ l n , n50,...,N21%. To create a signal that is emitted
words are coded using letters in the alphabet, and each l
of the code is repeated during a period ofT seconds. This
leads to the simple form of a transmitted signal

st5 (
i 52`

1`

ai f ~ t2 iT !, ~4!

whereai is chosen in the alphabetA5$ l n , n50,...,N21%.
Functionf may be ideally the characteristic function of inte
val @0,T#, but is generally more complicated. We will assum
here thatf (t) is compactly supported over@0,T#.

Signalst is of course deterministic. However, the codin
of a message leads to a very erratic sequence ofai ’s. This
sequence is therefore well described in a statistical se
The following assumptions are usually made.

~1! ai is a random variable that takes its values in t
alphabetA5$ l n , n50,...,N21%, each letter being chose
with equal probability 1/N.

~2! The sequence$ai , i 52`,...,1`% is an independen
and identically distributed sequence. In other words, the

a
e

a
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PRE 59 5015CYCLOSTATIONARITY AND STOCHASTIC RESONANCE . . .
crete time signalai is a perfect white noise: ifiÞ j , ai andaj
follow the same law and are statistically independent.

~3! The random variableai is zero mean.

In this setting, signalst is a random signal. Signalst is a
cyclostationary signal, withT as its fundamental period. Thi
is easily verified sincest is zero mean and

Gs~ t,t!5E@stst1t#5sa
2@ f ~ t ! f ~ t1t!#* t(

i
d~ t2 iT !,

where* t stands for convolution with respect to variablet,
andsa

2 is the variance of variablesai . The expression of the
covariance function ofst reveals the periodicity int of the
covariance.
For future calculations, it is worth examining the geomet
structure of the support of the covariance. Since it is p
odic, knowing the covariance fortP@0,T# is sufficient to
knowing it for all t. Furthermore, sincef (t) is compactly
supported,Gs(t,t) is zero outside the domain defined by

Dt,t5 H0<t<T
2t<t<T2t. ~5!

The support of the covariance function is represented in
5. Note that this support is not only the support of the co
riance, but is also the ‘‘independence’’ support. In oth
words, if (t,t) is not in that support, the random variablesst
andst1t are statistically independent.

We now consider a communication signalst corrupted by
an additive pure white noisebt . The corrupted signal is writ-
ten asyt5st1bt . Since signalst is cyclostationary andbt
stationary, signalyt is also cyclostationary, as demonstrat
by the periodic structure of its covariance functionGy(t,t)
5Gs(t,t)1sb

2d(t). If we go into the spectral domain, th
spectral correlation ofyt reads

Sy~a,n!5sa
2F~n!F~a2n!~1/T!( id„a2~ i /T!…1sb

2d~a!,

which shows that the contribution at nonzero cycle frequ
cies comes only from signalst . In other words, the station
ary part of the signal appears only at the zero cycle
quency.

FIG. 5. Periodic support of communications signals conside
in this paper. Fort, t outside the domain,st andst1t are indepen-
dent random variables. This property makes the calculation of
statistics of the output of a static nonlinearity easy~arbitrary units!.
i-

g.
-
r

-

-

A. Output statistics for a static nonlinearity

In this section, we investigate the statistical properties
the outputzt of a static nonlinear filter attacked byyt5st
1bt . Let g( ) denote the characteristic of the filter, so th
zt5g(yt).

Sinceyt is cyclostationary,zt will be in general cyclosta-
tionary. We assume here thatzt has the same fundament
period, that isT. We will come back to this assumption. Ifzt
is cyclostationary with periodT, knowing its statistics for all
t is equivalent to knowing them fortP@0,T#. Therefore, we
restrict t to that interval.

Mean

The mean of the output is given byE@zt#5E@g(yt)#
5*g(y)py ,(y,t)dy. Sincest and bt are independent vari
ables, the PDF of their sum is the convolution product
their PDF. Furthermore, sincetP@0,T#, we write st5a f(t)
wherea is a random variable that takes its values in alpha
A5$ l n , n50,...,N21%, each letter being equiprobable
Therefore, the PDF of yt is written as pyt

(y,t)

51/N(n50
N21pb„y2 l nf (t)…. Hence, the mean ofzt is given by

E@zt#5E g~y!pyt
~y,t !dy5

1

N (
n
E g~y!pb„y2 l nf ~ t !…dy.

~6!

We note that this mean is zero if the nonlinearity charac
istic is odd.

Covariance function

We evaluate Gz(t,t)5E@ztzt1t#2E@zt#E@zt1t# for t
P@0,T#. The second-order moment is given by

E@ztzt1t#5E g~y1!g~y2!pyt ,yt1t
~y1 ,y2 ,t,t!dy1dy2

and we thus need the knowledge of the joint PDF of va
ables yt and yt1t for tP@0,T#. Two cases appear in thi
calculation.

~1! t50: In this case, the statistics are completely det
mined by the PDFpyt

(y,t). We therefore obtain

E@zt
2#5

1

N (
n
E g~y!2pb„y2 l nf ~ t !…dy ~7!

and the variance is obtained by subtracting from the exp
sion the square of the mean.

~2! tÞ0: Here, the calculation depends on the belong
of t1t to interval @0,T#.

~1! t1t¹@0,T#: SincetP@0,T#, since the noise is purely
white and since theai ’s are independent and independent
the noise, variableszt andzt1t are independent. The secon
order moment then factorizes to giveE@ztzt1t#
5E@zt#E@zt1t#. The covariance is therefore equal to zero

~2! t1tP@0,T#. SincetP@0,T#, we can write
yt5f~t!a1bt ,

yt1t5f~t1t!a1bt1t ,

d

e
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wherea equalsl n with the probability 1/N. Therefore, we
obtain for the joint PDF ofyt andyt1t

pyt ,yt1t
~y1,y2,t,t!5Epyt ,yt1t /a5x~y1,y2,t,t!pa~x!dx

5Epbt
„y12 f ~ t !x…pbt1t

3„y22 f ~ t1t!x…pa~x!dx

5
1

N (
n
E pbt

„y12 f ~ t !x…pbt1t

3„y22 f ~ t1t!x…d~x2 l n!dx

5
1

N (
n

pb„y12 f ~ t !l n…pb„y22 f ~ t1t!l n….

The second equality results from the independence betw
bt and bt1t , and the last one frompbt

5pbt1t
5pb . The

second-order moment then reads

E@ztzt1t#5
1

N (
n
Eg~y1!g~y2!pb„y12 f ~ t !l n…

3pb„y22 f ~ t1t!l n…dy1dy2 . ~8!

We finally obtain the covariance fortP@0,T# by subtracting
from the expression the product of the first-order mome
E@zt#E@zt1t#. This covariance is denoted asGz

D(t,t).
The covariance for allt is obtained by periodizing the

preceding result. We recall that the fundamental domain
given by

Dt,t5 H0<t<T
2t<t<T2t. ~9!

Assuming thatGz
D(t,t) is continuous att50, the covariance

of zt can be put in the form

Gz~ t,t!51Dt,t
~ t,t!Gz

D~ t,t!* t(
i

d~ t2 iT !

1@Gz~ t,0!2Gz
D~ t,0!#d~t!. ~10!

The spectral correlation is then obtained by a tw
dimensional Fourier transform. Instead of writing it expli
itly, we will illustrate it in the examples in the next sectio

B. Input-output statistics for a static nonlinearity

When examining a transformation of a random signal, i
of interest to study the input-output statistics for informati
on the transformation. For example, in the linear case,
well known that the cross-correlation between the output
the input gives a method to identify the impulse response
the transfer. In the nonlinear case we are studying, there
course no equivalent to the impulse response~or equiva-
lently, a transfer function!. However, input-output correla
tion may indicate how energy is transferred from the inpu
the output.

We are thus concerned with the quantityGyz(t,t) defined
as the covariance between random variablesyt and zt1t
5g(yt1t). Since yt is assumed to be of zero mean, th
en

ts

is

-

s

is
d
f

of

o

covariance reduces to the second-order mom
E@ytg(yt1t)#.

Once again, we assume that the correlation is periodic
periodT, so that we restrictt to be in@0,T#. Now, if t1t is
not in @0,T#, the variables are independent, the second-or
moment factorizes, and it is therefore equal to zero sinceyt
is zero mean. FortÞ0, if t1tP@0,T#, we proceed as in the
preceding section, and

Gyz
D ~ t,t!5

1

N (
n
E y1g~y2!pb„y12 f ~ t !l n…

3pb„y22 f ~ t1t!l n…dy1dy2

5
1

N (
n

f ~ t !l nE g~y2!pb„y22 f ~ t1t!l n…dy2 .

~11!

For t50, we obtain Gyz(t,0)51/N(n*yg(y)pb„y
2 f (t) l n…dy. Then, the cross-correlation for allt is obtained
by periodizing the previous result and reads

Gyz~ t,t!51Dt,t
~ t,t!Gyz

D ~ t,t!* t(
i

d~ t2 iT !

1@Gyz~ t,0!2Gyz
D ~ t,0!#d~t!. ~12!

To evaluate the transfer of energy between different frequ
cies, the cross-correlation is then Fourier transformed to g
the spectral cross-correlation.

Since the general theory presented above is difficult
interpret, we now turn to a specific example.

V. STOCHASTIC RESONANCE FOR COMMUNICATIONS
SIGNALS IN A THRESHOLD DEVICE

In this section, we make explicit calculations of the spe
tral correlation of the output of static threshold devices fo
two-state communications signal. Precisely, the alpha
used here isA5$21,11%, and therefore we havel 0521
and l 1511.

Let u be a positive real number greater than 1, andg(x)
51[u,1`[ (x). The output of such a nonlinearity is thus
when the output exceeds the thresholdu, and is 0 otherwise.
Note that signalst alone cannot exceed the threshold since
maximum amplitude equals 1.

Using Eq.~6!, the mean ofzt for tP@0,T# is expressed as

E@zt#5 1
2 @Fb„2u2 f ~ t !…1Fb„2u1 f ~ t !…#.

Equation ~7! yields E@zt
2#51/2@Fb„2u2 f (t)…1Fb„2u

1 f (t)…#. Thus, the variance ofzt is given by

Gz~ t,0!5 1
2 @Fb„2u2 f ~ t !…1Fb„2u1 f ~ t !…#

3$12@Fb„2u2 f ~ t !…1Fb„2u1 f ~ t !…#%.

Now, Eq. ~8! gives for (t,t)PDt,t

E@ztzt1t#5 1
2 @Fb„2u2 f ~ t !…Fb„2u2 f ~ t1t!…

1Fb„2u1 f ~ t !…Fb„2u1 f ~ t1t!…#.
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We therefore obtain forGz
D(t,t), after some algebra,

Gz
D~ t,t!5 1

4 @Fb„2u1 f ~ t !…2Fb„2u2 f ~ t !…#

3@Fb„2u1 f ~ t1t!…2Fb„2u2 f ~ t1t!…#.

Finally, the covariance can be evaluated for allt using Eq.
~10!.

We can see that the periodicity of the covariance appe
in the functionFb(x) which is nonlinear. It will thus be very
difficult in a general case to evaluate the spectral correla
of zt . However, a simple case can be totally solved:f (t)
51@0,T#(t). For this function,f (t)5 f (t1t)51, and the co-
variance reads, according to Eq.~10!,

Gz~ t,t!5 1
4 @Fb~2u11!2Fb~2u21!#21Dt1t

~ t,t!* t

3(
i

d~ t2 iT !

1 1
2 @Fb~2u21!1Fb~2u11!#d~t!.

Let H(a,n) be the two-dimensional Fourier transform
1Dt,t

(t,t). We then have

Sz~a,n!5
1

4
@Fb~2u11!

2Fb~2u21!#2
1

T (
i

HS i

T
,n D dS a2

i

TD
1

1

2
@Fb~2u21!1Fb~2u11!#d~a!.

Hence, in this case, the amplitude of the spectral correla
is dependent on the cycle frequencyk/T only through the
term H(k/T,n).

Gaussian noise

Let e(x)51/A2p*2`
x e2u2/2du. Then, since the noise ha

a variancesb
2, the cumulative density function readsFb(x)

5e(x/sb). Whenf (t) is the characteristic function of@0,T#,
the spectral correlation is given by

Sz~a,n!5
1

4 FeS 2u11

sb
D2eS 2u21

sb
D G2 1

T

3(
i

HS i

T
,n D dS a2

i

TD
1

1

2 FeS 2u11

sb
D1eS 2u21

sb
D Gd~a!. ~13!

Figure 6 shows the amplitude of the spectral correlation
cycle frequency 1/T as a function ofsb , omitting the factor
H(k/T,n). The graph is repeated for three values ofu: 1.01,
1.2, and 1.5. For a small noise standard deviation, the am
tude is very small. When the standard deviation is high,
amplitude is also small. In between, the amplitude of
rs

n

n

t

li-
e
e

cycle correlation passes through a maximum. This fac
interpreted asstochastic resonanceor more precisely as
noise induced threshold crossings. This can be understoo
follows. When the noise is low, since the signal alone can
exceed the threshold, the output will not efficiently refle
the cyclostationarity of the input. When the noise variance
high, the input signal passes the threshold ‘‘very’’ random
and the output is almost stationary. In between these
tremes, there is an optimal variance of the noise for wh
the output is the most cyclostationary.

The amplitude of the spectral correlation for the Gauss
case is quite low~see Fig. 6!. However, the ratio of that
amplitude to the amplitude at cycle frequency zero may
be so low. This is shown in Fig. 7, a two-dimensional gra
of the ratio as a function ofsb andu. As can be seen in the
figure, the lower the threshold, the greater the effect of S
since the amplitude of the signal is 1, a small quantity
noise is needed to allow a crossing of the threshold, and
cyclostationarity of the input is nearly conserved. This ra
may then be interpreted as an index quantifying cyclostati
arity. This interpretation comes from the fact that the ze
cycle frequency corresponds to the stationary part of the
nal, whereas nonzero cycle frequency reveals cyclostatio
ity. Therefore, the higher this ratio, the ‘‘higher’’ the cyclos
tationarity of the signal.

It is also interesting to study the behavior of the spec
correlation at the zero cycle frequency. We recall th
H(a,n) is the two-dimensional Fourier transform o
1Dt,t

(t,t)51@0,T#(t)1@0,T#(t1t). It is then easy to calculate

explicitly H(a,n) which can be writtenF(n)F(a2n) with
F(n)5exp(2ipnT)sin(pnT)/(pn). Therefore, the spectra
correlation at the zero cycle frequency reads@see Eq.~13!#

FIG. 6. Amplitude of the cycle correlation at cycle frequen
k/T for the output of the simple threshold device attacked by
two-state communications signal corrupted by additive Gaus
noise. Functionf (t) is the characteristic function of@0,T#. u
51.01: ¯ , u51.2: -, u51.5: - - ~arbitrary units!.
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Sz~0,n!5
1

4 FeS 2u11

sb
D2eS 2u21

sb
D G2 1

T Usin~pn!

pn U2

1
1

2 FeS 2u11

sb
D1eS 2u21

sb
D G .

The first term of the expression presents a maximum a
function of sb whereas the second does not. Therefore, i
not always sure that a maximum forSz(0,n) as a function of
sb exists; it depends onT. For u51.2, we show in Fig.~8!
Sz(0,0) plotted againstsb for several values of periodT. It

FIG. 7. Ratio of the amplitude of the spectral correlation
cycle frequencyk/T over the amplitude at cycle frequency 0 for th
output of the simple threshold device attacked by a two-state c
munications signal corrupted by additive Gaussian noise. The r
is plotted as a function ofsb andu. Functionf (t) is the character-
istic function of @0,T# ~arbitrary units!.
ot

e
F
s
o

a
s

appears that there exists a maximum only for sufficien
high T’s. Since looking at thea50 slice in the spectra
correlation is equivalent to looking at the ‘‘stationarized
spectrum, we see that we can miss the effect: this is
possible when looking at nonzero cycle frequencies.

To see the effect of stochastic resonance at the zero c
frequency, one has to normalize the spectral correlation
the output by the spectral correlation of the input. Fora
50 andn50, this ratio reads

t

-
io

FIG. 8. Amplitude of the spectral correlation at cycle frequen
0 andn50 for the output of the simple threshold device attacked
a two-state communications signal corrupted by additive Gaus
noise. Functionf (t) is the characteristic function of@0,T#. u
51.2. PeriodT takes different values on which the existence o
maximum depends~arbitrary units!.
Sz~0,0!

Sy~0,0!
5

~T/4!$e@~2u11!/sb#2e@~2u21!/sb#%21 1
2 $e@~2u11!/sb#1e@~2u21!/sb#%

T1sb
2 .
ced
in-
This is shown in Fig. 9 where the effect is now seen. N
that the ratio can take values greater than one.

The limiting caseT→0 is interesting. In this case, th
input processyt tends to be a pure white noise of PD
pyt

(y)5 1
2 @pb(y21)1pb(y11)#. Therefore, this process i

stationary, and we observe again ‘‘noise induced thresh
crossings’’ for the outputzt . The effect is shown by the ratio
e

ld

e@~2u11!/sb#1e@~2u21!/sb#

2sb
2 ,

which can take values greater than one. The noise indu
crossings for this limit case have also been studied with
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formation theory tools@15,16# where the effect is quantified
using the input-output mutual information.

The cross-correlation between the input and the outpu
worth evaluating. After using Eqs.~11! and~12!, we obtain,
for f (t)51@0,T#(t),

Gyz~ t,t!5
1

2 FeS 2u11

sb
D2eS 2u21

sb
D G1Dt,t

~ t,t!* t

3(
i

d~ t2 iT !1
1

2 Fsbe2~u21!2/2sb
2

A2p

1
sbe2~u11!2/2sb

2

A2p
Gd~t!.

The spectral cross-correlation is the two-dimensional Fou
transform of the expression and reads in the Gaussian
considered

Syz~a,n!5
1

2 FeS 2u11

sb
D2eS 2u21

sb
D G 1

T

3(
i

HS i

T
,n D dS a2

i

TD1
1

2 Fsbe2~u21!2/2sb
2

A2p

1
sbe2~u11!2/2sb

2

A2p
Gd~a!.

This cross-correlation also reflects the stochastic reson
effect, since1

2 $e@(2u11)sb#2e@(2u21)/sb#% presents a

FIG. 9. Ratio of the amplitude of the spectral correlation
cycle frequency 0 andn50 of the output to that of the input, in th
case of the simple threshold device attacked by a two-state com
nications signal corrupted by additive Gaussian noise. Functionf (t)
is the characteristic function of@0,T#. u51.2. Stochastic resonanc
is now clearly seen~arbitrary units!.
is

r
se

ce

maximum. Thus, this correlation can also be used to rev
the effect, and is close to the input-output coherence mea
@12#.

Furthermore, it can be shown that the cross spectral
relation reveals the correlation between frequencyn2a of
the input with the frequencyn of the output. It could there-
fore be used to understand how the energy is transfe
from the input to the output.

VI. DISCUSSION AND CONCLUSION

We have shown that stochastic resonance can occur
cyclostationary stochastic processes. This fact has been d
onstrated on widely used signals: communications signa

To study the effect of SR, we work with the toolbox o
cyclostationary stochastic processes. We have shown
this toolbox is appropriate to study SR. We have especi
insisted on the fact that the averaging of the correlation fu
tion which is usually performed in the SR literature may le
to a loss of information. If performed on certain example
the average of the correlation function may cause the
effect to be overlooked~if we just look at the spectral densit
of the output!. However, looking at nonzero cycle freque
cies of the output, the effect is always revealed.

The importance of taking into account the entire spec
correlation~and the entire cross spectral correlation! also lies
in the fact that the spectral correlation~and cross spectra
correlation! quantifies the statistical interactions that may e
ist between frequencies of a signal. This is not the case
the classical spectrum~or cross spectrum! which assumes
that frequencies are uncorrelated. Therefore, using cyclo
tionarity tools can provide more information concerning t
physics of SR.

We note that the cyclostationarity of signals involved
stochastic resonance has been taken into account in s
theories. For example, Jung and Hanggi@20# use Floquet-
type solutions of the Fokker-Planck equation in order
evaluate correlation functions and spectral densities in
case of SR in the quartic potential. However, they again
erage in time to get ‘‘stationarized’’ quantities. Anyway, w
believe that the extension from static nonlinearities to d
namical systems, as described in this paper, could be d
using the Floquet theory.

We now examine the assumption used in Sec. IV A wh
states that the output signal of a static nonlinearity attac
by a cyclostationary signal is cyclostationary, with the sa
period of cyclostationarity. This assumption is true for mo
of the nonlinearities we can play with. However, some no
linearities will make that assumption false. For example
squarer may double the fundamental frequency and there
halve the period. In that case, our calculations remain v
since ifT/2 is a period of cyclostationarity,T is also a period.
But some cases may be more troublesome. Consider a
state communications signal~61! built with function f (t)
51@0,T#(t). If this signal is squared, it is obviously not cy
clostationary, since it is constant. But when corrupted
noise, it will be cyclostationary with periodT/2. Therefore,
the assumption can be viewed as a reasonable assumpt
The examples presented in this paper are very simple, s
we restricted ourselves to the case of threshold devices
already mentioned, we studied only noise induced thresh

t
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crossings@8#. Several things must be done to show the i
portance of cyclostationarity in SR. The more importa
theoretically is to investigate SR for cyclostationary stoch
tic processes in dynamical systems~we are currently working
in that direction for discrete time signals, and SR does
cur!. Finally, we would like to mention that communication
systems often involve high nonlinearities, such as hard l
-

ev
-
t
-

-

-

iters to make decisions, and that SR for communications
nals may be useful in practice.
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